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A method is developed which permits a rapid computation of the nuclear potential 
matrix elements on the deformed Cartesian basis using the reduced matrix elements 
<nl j VJ~T 1 n’l’), and the brackets (nlm 1 n&n,> given by an analytic expression valid 
for WI, WY, % 9 OJ being nonequal. 

The main features concerning the implantation of this method on a computer using 
the symmetry properties of the calculated terms are also given. 

It is sometimes advantageous in nuclear structure calculations to use the 
harmonic oscillator basis. It is then easy to build states of given (A, cl) [l] and in 
the case of deformed nuclei, one can use a restricted basis with different values of o 
on the three coordinate axes [2]. Nevertheless, in that case the calculation of the 
nuclear interaction matrix elements may necessitate the evaluation of multiple 
integrals with all the disadvantages involved. 

We suggest an indirect method without integral calculations using the reduced 
matrix elements on the spherical basis. This method is specially suitable for 
potentials defined by matrix elements in the spherical basis, as Kuo and Brown 
potential, and may be used also for potentials given analytically, since the programs 
for the evaluation of such elements generally exist for such potentials. We use an 
analytic expression for the bracket (n&,n, 1 nlm) valid for a deformed Cartesian 
basis and symmetry properties which allow the program to be available on a small 
computer. 
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PRINCIPAL FEATURES OF THE CALCULATION 

Knowing the reduced matrix elements <nZ I V,,, I n’l’), we compute all 
(ii ] Y ] RI), i, j, k, I being wave functions of the Cartesian basis belonging to the 
Is, lp, 2s, Id shells with supplementary quantum numbers T, = -&$ and (T, = &+. 
wx > wy , w, may have different values. Usually, the reduced matrix elements are 
given for 

1, I’ = 0, 1, 2, 

0 < n, n’ < 7. 
(1) 

For oz, my, wz equal, 1 nznyn,) may be expanded on the states ] nlm) of the 
same w and the same major shell. Then the calculation of matrix elements 
<ij 1 V ] k”Z) is done by adding the contributions of a finite number of known reduced 
matrix elements. 

Forw,, my, o, nonequal, I n,n,n,) has an infinite expansion on the spherical 
basis. 

To calculate matrix elements (ij 1 V 1 &) one needs to know an infinite number 
of reduced matrix elements. Then one has to truncate the expansion according to 
condition (1). The evaluation will be correct if 

z, I Wm I w&l2 
Z=O,l,Z 

-l<rn<Z 

is very small. This condition may be achieved if n, + n, + n, is small and if w2 , 
wy , w, are not too much different, so we take 

w = (w&Jarwz)l~3. 

Since our program evaluates (ij ( V 1 k”l) in the first three major shells and takes 
into account the large dimension of the spherical basis used, we may hope for a 
good precision as regards physical deformations. 

DETAILS OF THE CALCULATION 

First the scalar products (nlm I n,n,n,) are calculated. If the Cartesian basis is 
not deformed we obtain [3] 

Wm I wvJ 
= (-i)“y [1 + (-p+ny-m] (-yb-z--m+n,--n,) (nz + ;$+- m/2)! 

( (21 + l)(E - m)! n, ! ny ! n, ! 
x (n+Z+l)!!(n-Z)!!(/-m)! 1 

V2 6 _ _ 
n,,n n, ny 
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x ((a - 1 + 
((n - l)/2 + s) ! (21 - 2s)! 

m--n=-- n,)/2 + S)! S! (I - s)! (1 - 2s - m)! (2) 

Form > 0. 
In order to eliminate the complex coefficient (-ip we use the Cartesian basis 

kets with a coefficient (4)“~ as geometrical basis states. If the Cartesian basis is 
deformed we write 

Here the 1 ~t,)n~‘n~‘) are the kets of the Cartesian basis with the same o as ( nlm) 
and belong to the same major shell. (nlm I n,‘n,‘n,‘) is then evaluated with the 
previous formula, 

Writing 
Gw,n, I nle’ny’h’) = (4 I nz’Xnv I ny’Nb I G’>. 

we have 

(n, I n,‘) = ((w, + w) 7rn, ! n,‘! 2’=+*% )-1’2 1-r exp(-x2/2) HnJ~x) Hnz4J3x) dx. 

In order to calculate the last integral we integrate the product of exp( -x2/2) and 
the generating functions of H,~(cxx) and H,;(/~x) 

s 
-lrn I1 = exp(-x2/2) exp(--s2 + 2s0rx - t2 + 21/3x) dx 

= (ii)1/2 exp(s2(2a2 - 1) + ty2p - 1) + 4@st). 

This integral may be expanded in the following way: 

exp(-x2/2) H,(U) H&Ix) dx. 

By identifying with the expansion of I1 after integration we obtain for m + n even 

s +m exp(-x2/2) H,Jacx) H,;(flx) dx 
-co 

minh,.n,‘) 
= (2~r)l/~ n, ! n,‘! C 224 (29 - l)(n,-q)/2 

a==0 h! + %‘/2)! 
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The summation over q is done for q values being such that q + n, is even. Knowing 
the brackets (nlm ] nan,n,) we calculate the matrix elements 

(JJ, 1 l’Sm’S,‘)(n’l’m’ I nzrny’n,‘). 

Finally we calculate (ij ] V I El). 
The spatial wave functions #J&& associated to i, j, k, 1 are expanded in the 

C.M. and relative coordinate systems. 
These expansions are factorizables on the three axes, the expansion coefficients 

being given by the relation [4] 

(n s ) ii, 1 n, N) = ( nz ! g;! Iv! y2 qn, + ii, - n - Iv) 

? (n, - 
C-P 

n + a)! (i& - a)! (n - a)! a! * 

For each term of the expansion all S, S, , T, T, are coupled to the i, j, k, 1 spins 
and isospins with the addition of the different contributions. We also add to the 
nuclear interaction the C.M. kinetic energy two body contribution 

m: C, PiPj * -- 
1<3 

A is the mass number of the nucleus 

PlP2 = P1rPzr + PlVPZV + PlZPZZ * 

On OX, for instance, we have [5] 

(vs I ~~~~~~ I vkd = - gmfiW,[8,y-l,n,(2ny)l/a - ~n,+l,n,(2(nv+l))l/21 

x [&L&y3(2nsP - sng+l,nS(2(ns+l)}‘lal. 

SYMMETRY PROPERTIES USED IN THE CALCULATION 

The use of several symmetrie properties is necessary for making the program 
available on an IBM 360-40. 

-(nlm 1 ns& is different from 0 only if n, + n, + n, + 1 and n, + nv + m 
are even. Then (nan,n, I nlm) may belong to the four series: 
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Series 1 2 3 4 
___.~~~_. ~~~ _ 

( -)RZ+“v + - - + 
(--YE + - + 

I 0 2 -1 -1 1 

-2 
m 0 0 1 1 0 

2 

-<ww,Sz I VST I n,‘n,‘n,‘S,‘> 

It may be shown by a rotation of n around 0, in the triplet case that 

<wf&G I VST I ns’ny%‘Sz’) 
= (-p+& h&P, - sz I vsr I ~,‘4/‘~,’ - Sz’>. 

Moreover a matrix element may differ from 0 only if n, + nz’ + S, + S,’ is even. 
Then only the following elements are computed: 

n, + n,’ even n, + nz’ odd 
s, = 1 S,’ = 1 s, = 1 S,’ = 0 
s, = 1 S,’ = -1 s, = 0 S,’ = 1 
s, = 0 S,’ = 0 

Singlet 
-(ijl VI Ll) 

The Cartesian basis is numbered so that odd states have numbers greater than 
even states. An element (ij I Y I &) may generate seven other elements by permu- 
tations of i and j, k and I, ij and kl. Then we compute only elements <ij ) Y I Jr) 
such that 

no& 3 n”+j no& 3 n”cj$ n”$i 3 n”q& . 

There are only four possible series of elements to be calculated: 

(3) 

even even 
odd even 
odd odd 
odd odd 

even 
odd 
odd 
even 

even 
even 
odd 
even 
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The fourth series is useless for Hartree Fock calculations with parity eigenstates 
orbitals. 

Sets of c$&$~& satisfying (3) are called successively. The calculation of all the 
(ij I V 1 kl) built by making spins and isospins of i, j, k, I equal to j-- is then 
performed and the values are written on a magnetic tape. The whole calculation 
requires only 15 minutes on an IBM 36040. 
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